We propose a novel approach for deep learning-based Multi-View Stereo (MVS). For each pixel in the reference image, our method leverages a deep architecture to search for the corresponding point in the source image directly along the corresponding epipolar line. We denote our method DELS-MVS: Deep Epipolar Line Search Multi-View Stereo. Previous works in deep MVS select a range of interest within the depth space, discretize it, and sample the epipolar line according to the resulting depth values: this can result in an uneven scanning of the epipolar line, hence of the image space. Instead, our method works directly on the epipolar line: this guarantees an even scanning of the image space and avoids both the need to select a depth range of interest, which is often not known a priori and can vary dramatically from scene to scene, and the need for a suitable discretization of the depth space. In fact, our search is iterative, which avoids the building of a cost volume, costly both to store and to process. Finally, our method performs a robust geometry-aware fusion of the estimated depth maps, leveraging a confidence predicted alongside each depth. We test DELS-MVS on the ETH3D, Tanks and Temples and DTU benchmarks and achieve competitive results with respect to state-of-the-art approaches.
translated by 谷歌翻译
在许多计算机视觉管道中,在图像之间建立一组稀疏的关键点相关性是一项基本任务。通常,这转化为一个计算昂贵的最近邻居搜索,必须将一个图像的每个键盘描述符与其他图像的所有描述符进行比较。为了降低匹配阶段的计算成本,我们提出了一个能够检测到每个图像处的互补关键集的深度提取网络。由于仅需要在不同图像上比较同一组中的描述符,因此匹配相计算复杂度随集合数量而降低。我们训练我们的网络以预测关键点并共同计算相应的描述符。特别是,为了学习互补的关键点集,我们引入了一种新颖的无监督损失,对不同集合之间的交叉点进行了惩罚。此外,我们提出了一种基于描述符的新型加权方案,旨在惩罚使用非歧视性描述符的关键点的检测。通过广泛的实验,我们表明,我们的功能提取网络仅在合成的扭曲图像和完全无监督的方式进行训练,以降低匹配的复杂性,在3D重建和重新定位任务上取得了竞争成果。
translated by 谷歌翻译
我们提出了一种基于深度学习的基于深度学习的多视图立体声方法。我们的方法通过以二进制决策方式遍历每个像素处的可行深度值的连续空间来估计高分辨率和高度精确的深度映射。决策过程利用了深网络架构:这计算了一个像素的二进制掩模,该屏蔽建立每个像素实际深度是否在其当前迭代单独深度假设的前面或后面。此外,为了处理闭塞区域,在每次迭代时,使用由第二网络估计的像素重量融合不同源图像的结果。由于采用的二元决策策略,这允许有效探索深度空间,我们的方法可以在不交易分辨率和精度的情况下处理高分辨率图像。这使其与大多数基于学习的多视图立体声方法相比,深度空间的明确离散化需要处理大的成本卷。我们将我们的方法与DTU,坦克和寺庙的最先进的多视图立体声方法进行比较,以及具有挑战性的Eth3D基准测试,并表现出竞争力的结果。
translated by 谷歌翻译
According to the latest trend of artificial intelligence, AI-systems needs to clarify regarding general,specific decisions,services provided by it. Only consumer is satisfied, with explanation , for example, why any classification result is the outcome of any given time. This actually motivates us using explainable or human understandable AI for a behavioral mining scenario, where users engagement on digital platform is determined from context, such as emotion, activity, weather, etc. However, the output of AI-system is not always systematically correct, and often systematically correct, but apparently not-perfect and thereby creating confusions, such as, why the decision is given? What is the reason underneath? In this context, we first formulate the behavioral mining problem in deep convolutional neural network architecture. Eventually, we apply a recursive neural network due to the presence of time-series data from users physiological and environmental sensor-readings. Once the model is developed, explanations are presented with the advent of XAI models in front of users. This critical step involves extensive trial with users preference on explanations over conventional AI, judgement of credibility of explanation.
translated by 谷歌翻译
Enterprise resource planning (ERP) software brings resources, data together to keep software-flow within business processes in a company. However, cloud computing's cheap, easy and quick management promise pushes business-owners for a transition from monolithic to a data-center/cloud based ERP. Since cloud-ERP development involves a cyclic process, namely planning, implementing, testing and upgrading, its adoption is realized as a deep recurrent neural network problem. Eventually, a classification algorithm based on long short term memory (LSTM) and TOPSIS is proposed to identify and rank, respectively, adoption features. Our theoretical model is validated over a reference model by articulating key players, services, architecture, functionalities. Qualitative survey is conducted among users by considering technology, innovation and resistance issues, to formulate hypotheses on key adoption factors.
translated by 谷歌翻译
Mixtures of von Mises-Fisher distributions can be used to cluster data on the unit hypersphere. This is particularly adapted for high-dimensional directional data such as texts. We propose in this article to estimate a von Mises mixture using a l 1 penalized likelihood. This leads to sparse prototypes that improve clustering interpretability. We introduce an expectation-maximisation (EM) algorithm for this estimation and explore the trade-off between the sparsity term and the likelihood one with a path following algorithm. The model's behaviour is studied on simulated data and, we show the advantages of the approach on real data benchmark. We also introduce a new data set on financial reports and exhibit the benefits of our method for exploratory analysis.
translated by 谷歌翻译
In this work, we introduce a hypergraph representation learning framework called Hypergraph Neural Networks (HNN) that jointly learns hyperedge embeddings along with a set of hyperedge-dependent embeddings for each node in the hypergraph. HNN derives multiple embeddings per node in the hypergraph where each embedding for a node is dependent on a specific hyperedge of that node. Notably, HNN is accurate, data-efficient, flexible with many interchangeable components, and useful for a wide range of hypergraph learning tasks. We evaluate the effectiveness of the HNN framework for hyperedge prediction and hypergraph node classification. We find that HNN achieves an overall mean gain of 7.72% and 11.37% across all baseline models and graphs for hyperedge prediction and hypergraph node classification, respectively.
translated by 谷歌翻译
Artificial neural networks can learn complex, salient data features to achieve a given task. On the opposite end of the spectrum, mathematically grounded methods such as topological data analysis allow users to design analysis pipelines fully aware of data constraints and symmetries. We introduce a class of persistence-based neural network layers. Persistence-based layers allow the users to easily inject knowledge about symmetries (equivariance) respected by the data, are equipped with learnable weights, and can be composed with state-of-the-art neural architectures.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have become increasingly important in recent years due to their state-of-the-art performance on many important downstream applications. Existing GNNs have mostly focused on learning a single node representation, despite that a node often exhibits polysemous behavior in different contexts. In this work, we develop a persona-based graph neural network framework called PersonaSAGE that learns multiple persona-based embeddings for each node in the graph. Such disentangled representations are more interpretable and useful than a single embedding. Furthermore, PersonaSAGE learns the appropriate set of persona embeddings for each node in the graph, and every node can have a different number of assigned persona embeddings. The framework is flexible enough and the general design helps in the wide applicability of the learned embeddings to suit the domain. We utilize publicly available benchmark datasets to evaluate our approach and against a variety of baselines. The experiments demonstrate the effectiveness of PersonaSAGE for a variety of important tasks including link prediction where we achieve an average gain of 15% while remaining competitive for node classification. Finally, we also demonstrate the utility of PersonaSAGE with a case study for personalized recommendation of different entity types in a data management platform.
translated by 谷歌翻译
G-Enum histograms are a new fast and fully automated method for irregular histogram construction. By framing histogram construction as a density estimation problem and its automation as a model selection task, these histograms leverage the Minimum Description Length principle (MDL) to derive two different model selection criteria. Several proven theoretical results about these criteria give insights about their asymptotic behavior and are used to speed up their optimisation. These insights, combined to a greedy search heuristic, are used to construct histograms in linearithmic time rather than the polynomial time incurred by previous works. The capabilities of the proposed MDL density estimation method are illustrated with reference to other fully automated methods in the literature, both on synthetic and large real-world data sets.
translated by 谷歌翻译